

Green Chemistry Business Value

Green Chemistry Change Management

Tabitha Petchey 18 Sep 2024

2

Agenda

- Is "green" enough?
- Finding Business Value
 - Costs of Hazardous Chemistry
 - Entering New Markets
 - Innovative Products
 - Performance Advantage
 - Consumer Demand
 - Regulatory Pressure
- Sustainable Business Models for Chemistry
- Conclusions and Further Reading
- Exercise: Your Business Case

Is "green" enough?

No.

Pretty much never.

Necessary, but insufficient

- Sustainability is important and necessary, but usually not sufficient for business success
- Until externalities are reflected in costs, sustainability won't win on economics

Source: GC3, Green Chemistry Business Opportunity

5

Risk of innovation

- Change and innovation come with risks
 - losing sales
 - losing market share
 - reputation harm
 - losing R&D investment
 - regrettable substitution
- Benefits must outweigh these risks to create change

Why is green chemistry booming?

- Hazardous chemistry has significant monetary costs
- Safer chemistry can allow entry into new markets
- Sustainable chemistry can create entirely new products
- Biobased chemistry can have performance advantages
- Consumer and NGO pressure creates risk
- Chemical legislation is incentivising safer chemistry

Finding Business Value

Costs of Hazardous Chemistry

(8

Costs of Hazardous Chemistry

Sector	Business Value at Risk	Impact	Time Period
All	Federal Enforcement	\$9.7 billion in private industry cleanup actions and equipment, along with \$163 million in fines ⁸⁶	2014
All	Tort Settlements	\$17 million in settlements for violating California Prop 65 ⁸⁷	2013
Consumer Products	Lawsuits	25 lawsuits filed against companies using BPA in their products ⁸⁸	2009- 2010
Beauty & Personal Care	Market Share	-8.4% in market share of Johnson & Johnson due to consumer concern about ingredients ⁸⁹	2008- 2010
Toys	Shareholder Value	-25% stock price of RC2 from lead- painted toys ⁹⁰	2007
Health Care	Market Share	Existing vendor lost \$70 million contract because it could not provide PVC/DEHP-free medical products ⁹¹	2005- 2010
Chemicals	Market Value	\$200 billion (or 31% of assets' value) due to lawsuits and toxic releases ⁹²	2001
Chemicals	Regulatory Fines	\$16.5 million of DuPont for Teflon [®] pollution; faced class-action lawsuits ⁹³	2005- 2008

Fines for Mishandling Hazardous Chemicals⁹⁴

Source: Trucost, Business and Economic Case for Safer Chemistry

Problem: EPS dissolution without toluene

Initial requirements

- Close to cost of toluene
- Dissolves EPS as quickly as toluene
- Less flammability risk, other hazards are fine

Final solution

- More expensive solvent (>10x cost)
- Slower dissolution of EPS
- Completely hazard-free

- Primary driver for substitution was cost savings
- Quantifying process costs made solvent cost unimportant
- Other factors became more important than speed of cleaning
 - Reliability
 - Ease of use
 - Worker safety
 - Absence of reputational risk/litigation costs

Hazardous Solvent

- Build outdoor cleaning site far away from manufacturing buildings
- Forklift tools across site
- Fireproof storage
- Secondary and tertiary containment systems
- 24h monitoring for spills
- Power generator
- Volatile solvent pumps
- Extensive operator training
- No climate control = unreliable cleaning

Non-hazardous Solvent

- Locate tank inside main manufacturing building
- Easy and safe transfer for cleaning
- No special storage needs
- Secondary containment, tertiary not necessary
- No monitoring
- Use existing power supply
- Standard pumps
- Minimal operator training
- Consistent temperature and cleaning

Finding Business Value

Entering New Markets

New Markets

- Business growth can be achieved by using safer chemistry to enter new markets
- Established brands are investing in green chemistry R&D to boost future revenue

Sectors with the greatest potential growth in green chemistry.

1	Packaging		
2	Polymers and Plastics		
3	Biobased Products		
4	Consumer Products		
5	Apparel and Textiles		
6	Building Materials		
7	Pharma and Life Sciences		
8	Specialty Chemicals		
9	Electronics		

Source: GC3, Green Chemistry Business Opportunity

New Markets: Paints and Coatings

- Brand supplying paints and coatings to multiple sectors
- Established in construction and DIY trade markets
- No presence in consumer DIY market
- Needed USP to enter consumer market competitively

17

New Markets: Paints and Coatings

- Green chemistry solution
 - Safe, biobased coating product would be unique on the market
- Market advantages
 - Less price-sensitive; can support higher product price
 - Societal and environmental benefits more important
- Other drivers
 - Corporate sustainability goals
 - Government investment initiatives
 - Grant funding to de-risk R&D

New Markets: Paints and Coatings

- Replaced two petrochemical process solvents with one biobased, low-hazard option
- High performance level maintained
 - One metric actually improved
- Established partnership between global brand and green solvent supplier
- Patent pending for new coating technology
- Technology is quickly being scaled from small subsidiary market to global market

Break

(19)

Finding Business Value

Innovative Products

Innovative Products

- Sustainable chemistry can create valuable innovation
- Green chemistry enables
 - performance advantage
 - eco-labeling
 - cost reduction
 - new business models

Market growth of green chemistry products.

Innovative Products: Detergent

- Smol: UK detergent and home cleaning
- Founded in 2018 to supply dish detergent tabs
- \$34M in funding in 2021
- Direct-to-consumer subscription service
- Estimates 2.5M washes per week

Innovative Products: Detergent

- Chemistry innovation
 - Super concentrated tablets
 - 30 tabs in mailable package
 - All-in-one: no salt or rinse aid
 - Fewer chemicals, same performance
- Packaging innovation
 - Child-proof cardboard box
 - Plastic-free
- Affordable: 19p vs. 14-32p

Finding Business Value

Performance Advantage

24

Performance Advantage

- Biobased versions of petrochemicals can be particularly hard to sell
- Chemically identical, but more expensive and less stable supply during scale-up
- If pricing is not competitive, must have a real performance advantage

scale of supply

26

Performance Advantage: Solvents

- Biobased production of acetone and butanol is being attempted by several companies
- Varying degrees of success
- Bulk solvent is chemically identical regardless of source

Performance Advantage: Solvents

- Focus on differences to find value
- Petrochemical acetone contains trace benzene (carcinogenic) and propylene (reactive)
 - Lack of reactivity can improve efficiency of catalytic reactions
 - Lack of carcinogenicity can access health-conscious markets
- Biobased butanol can be added to biofuels
 - Improves performance of biodiesel
- Biobased acetone and butanol may smell different
 - Potential applications in fragrances, camping fuels

Finding Business Value

Consumer Demand

Consumer Demand

Product categories with observed increased demand for green chemistry.

- NGOs and increasingly informed consumers are creating market pressure
- Increased demand for sustainable products
- Hazardous chemicals can cause loss of market share

Consumer Demand: Personal Care

Consumer Demand: Baby Car Seats

- Uppababy was first to US market with a baby car seat free of flame retardant chemicals
- Functional substitution: merino wool fabric that naturally resists fire
- More expensive than their standard car seats
- First production run sold out within days

Finding Business Value

Regulatory Pressure

Regulatory Pressure

Sector	Restriction	Impact	Time Period
Personal Care	Minnesota Legislation	Phase out of triclosan from consumer soap by 2017; FDA cost estimates for reformulation: \$112-369 million ^{74, 75}	2014
Consumer Products	California Legislation	Chemical regulatory model and standard for interstate manufacturers and retailers ⁷⁶	2008- Present
Building Materials	California Legislation	Lumber Liquidators flooring with formaldehyde 6-20 times the limit; -26% in stock price ⁷⁷	2015
Coatings	California Legislation	Manufacturers must provide post-use disposition for architectural paint or face \$10,000 daily fines ⁷⁸	2012
Electronics	EU RoHS	Apple and HP eliminated substances of concern for market access ⁷⁹	2011
Electronics	EU RoHS	29% of US firms lost or delayed EU sales due to non-compliance (average \$1.84 million per firm) ⁸⁰	2006- 2010
Chemicals & Electronics	EU REACH and RoHS	Global compliance: \$32 billion for RoHS and \$2 billion for REACH ^{81, 82}	2006- 2010

- EU REACH restricts use of many hazardous chemicals and penalises non-compliance
- CSS promises stronger regulations to come, favouring sustainability in addition to safety

Source: Trucost, Business and Economic Case for Safer Chemistry

Other Drivers

- Avoid finite resources
 - Petroleum market increasingly unstable
 - Lithium becoming problematic
- Investors and shareholders
 - Expectations are changing
 - Increasing pressure to act sustainably
- Maintaining competitiveness
 - Investing in green R&D yields patents
 - Keep from getting stuck behind others' IP
- Demand from institutional buyers

Sustainable Business Models for Chemistry

Where is waste generated?

Business Models for Waste Reduction

- Circular inputs
 - renewable, bio-based, recycled materials and energy
- Resource recovery
 - collecting and re-processing embedded materials and energy
- Product as a service
 - sell function, not product (e.g. chemical leasing)
- Product use extension
 - Extend product lifespan through design, repairs, reconditioning, upgrades, resale
- Sharing platforms
 - Optimise resource utilisation through shared access and usage (e.g. trade excess inventory)

Circular Inputs: Method

Resource Recovery: Molok

- Provider of waste and recycling containers
- "Deep collection method" involves belowground storage
- Reduces frequency of collection
- Maintenance, spare parts, upgrades prolong use
- Production process reclaims plastic cutting waste, uses recycled materials

Product as a Service: Safechem

- Chemical leasing model for metal cleaning solvents
- Sell the cleaning function, not the solvent
- Used solvent is collected by provider
- Incentivises provider to minimise waste and recycle solvent

Source: Safechem

Product Use Extension: Nikwax

- Chemical products that extend clothing lifespan
- Waterproofing, leather conditioning, UV-proofing
- Easy for consumers to use at home
- Water-based, non-aerosol, free of PFAS

Sharing Platforms: Excess Materials Exchange

- Digital matching platform for excess materials and wastes
- Identifies any material in a standardised way
- Quantifies value and impacts of materials
- Uses AI plus human expertise to match waste stream to high-value reuse option
- Example: Vitens (water company) was filtering out and disposing of water impurities, now they sell them as salts and organic compounds for reuse

Conclusions

43

To sum up...

- Sustainable metrics alone are not enough
- To succeed in our traditional economy, green chemistry must create value
- Green chemistry can add benefits, from reducing risks and costs to creating performance advantage
- Business models can also make chemistry more sustainable

Further Reading

- Green Chemistry: Driver of Business Opportunity
 <u>https://greenchemistryandcommerce.org/documents/uml-rpt-GreenChem-1.22-12.pdf</u>
- Business and Economic Case for Safer Chemistry <u>https://greenchemistryandcommerce.org/documents/trucost_gc3_report_april2015.pdf</u>
- Sustainable Business Models for the Chemical Industry <u>https://www.sitra.fi/app/uploads/2020/05/sustainable-and-circular-business-models-for-the-chemical-industry.pdf</u>
- OECD Chemical Substitution Case Studies <u>https://www.oecd.org/chemicalsafety/risk-management/case-studies-of-substitution-and-methodology.htm</u>

Break

46

Exercise: Business Case

Analysing Business Case (60 min)

Google Sheet for group work on 1 and 2: <u>https://bit.ly/3CPrzG0</u>

- <u>Case Study 1: Plastic Bag Printing</u> (15 min)
- <u>Case Study 2: Tea Decaffeination</u> (15 min)
- Driver(s) for substitution
- Barriers to substitution
- What value can green chemistry add?
- Could any of the sustainable business models be applied?

Switch to handout for solo analysis of example from your industry (30 min).

Questions?

Contact Tabitha Petchey at tabitha.petchey@greenrosechemistry.com.